×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2306.15116v3 Announce Type: replace
Abstract: Closed-loop control algorithms for real-time calibration of quantum processors require efficient filters that can estimate physical error parameters based on streams of measured quantum circuit outcomes. Development of such filters is complicated by the highly nonlinear relationship relationship between observed circuit outcomes and the magnitudes of elementary errors. In this work, we apply the extended Kalman filter to data from quantum gate set tomography to provide a streaming estimator of the both the system error model and its uncertainties. Our numerical examples indicate extended Kalman filtering can achieve similar performance to maximum likelihood estimation, but with dramatically lower computational cost. With our method, a standard laptop can process one- and two-qubit circuit outcomes and update gate set error model at rates comparable with current experimental execution.

Click here to read this post out
ID: 809512; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 21
CC:
No creative common's license
Comments: