×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2402.11567v3 Announce Type: replace
Abstract: The quantum Cram\'{e}r-Rao bound (QCRB) as the ultimate lower bound for precision in quantum parameter estimation is only known to be saturable in the multiparameter setting in special cases and under conditions such as full or average commutavity of the symmetric logarithmic derivatives (SLDs) associated with the parameters. Moreover, for general mixed states, collective measurements over infinitely many identical copies of the quantum state are generally required to attain the QCRB. In the important and experimentally relevant single-copy scenario, a necessary condition for saturating the QCRB in the multiparameter setting for general mixed states is the so-called partial commutativity condition on the SLDs. However, it is not known if this condition is also sufficient. This paper establishes necessary and sufficient conditions for saturability of the multiparameter QCRB in the single-copy setting in terms of the commutativity of a set of projected SLDs and the existence of a unitary solution to a system of nonlinear partial differential equations. New necessary conditions that imply partial commutativity are also obtained, which together with another condition become sufficient. Moreover, when the sufficient conditions are satisfied an optimal measurement saturating the QCRB can be chosen to be projective and explicitly characterized. An example is developed to illustrate the case of a multiparameter quantum state where the conditions derived herein are satisfied and can be explicitly verified.

Click here to read this post out
ID: 809523; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: