×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2205.05955v3 Announce Type: replace
Abstract: Likelihood-based inference in stochastic non-linear dynamical systems, such as those found in chemical reaction networks and biological clock systems, is inherently complex and has largely been limited to small and unrealistically simple systems. Recent advances in analytically tractable approximations to the underlying conditional probability distributions enable long-term dynamics to be accurately modelled, and make the large number of model evaluations required for exact Bayesian inference much more feasible. We propose a new methodology for inference in stochastic non-linear dynamical systems exhibiting oscillatory behaviour and show the parameters in these models can be realistically estimated from simulated data. Preliminary analyses based on the Fisher Information Matrix of the model can guide the implementation of Bayesian inference. We show that this parameter sensitivity analysis can predict which parameters are practically identifiable. Several Markov chain Monte Carlo algorithms are compared, with our results suggesting a parallel tempering algorithm consistently gives the best approach for these systems, which are shown to frequently exhibit multi-modal posterior distributions.

Click here to read this post out
ID: 809575; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 19
CC:
No creative common's license
Comments: