×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2305.17744v2 Announce Type: replace
Abstract: In myriad statistical applications, data are collected from related but heterogeneous sources. These sources share some commonalities while containing idiosyncratic characteristics. One of the most fundamental challenges in such scenarios is to recover the shared and source-specific factors. Despite the existence of a few heuristic approaches, a generic algorithm with theoretical guarantees has yet to be established. In this paper, we tackle the problem by proposing a method called Heterogeneous Matrix Factorization to separate the shared and unique factors for a class of problems. HMF maintains the orthogonality between the shared and unique factors by leveraging an invariance property in the objective. The algorithm is easy to implement and intrinsically distributed. On the theoretic side, we show that for the square error loss, HMF will converge into the optimal solutions, which are close to the ground truth. HMF can be integrated auto-encoders to learn nonlinear feature mappings. Through a variety of case studies, we showcase HMF's benefits and applicability in video segmentation, time-series feature extraction, and recommender systems.

Click here to read this post out
ID: 809578; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 20
CC:
No creative common's license
Comments: