×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11666v1 Announce Type: new
Abstract: Though free-floating planets (FFPs) that have been ejected from their natal star systems may outpopulate their bound counterparts in the terrestrial-mass range, they remain one of the least explored exoplanet demographics. Due to their negligible electromagnetic emission at all wavelengths, the only observational technique able to detect these worlds is gravitational microlensing. Microlensing by terrestrial-mass FFPs induces rare, short-duration magnifications of background stars, requiring high-cadence, wide-field surveys to detect these events. The Transiting Exoplanet Survey Satellite (TESS), though designed to detect close-bound exoplanets via the transit technique, boasts a cadence as short as 200 seconds and has monitored hundreds of millions of stars, making it well-suited to search for short-duration microlensing events as well. We have used existing data products from the TESS Quick-Look Pipeline (QLP) to perform a preliminary search for FFP microlensing candidates in 1.3 million light curves from TESS Sector 61. We find one compelling candidate associated with TIC-107150013, a source star at $d_s = 3.194$ kpc. The event has a duration $t_E = 0.074^{+0.002}_{-0.002}$ days and shows prominent finite-source features ($\rho = 4.55^{+0.08}_{-0.07}$), making it consistent with an FFP in the terrestrial-mass range. This exciting result indicates that our ongoing search through all TESS sectors has the opportunity to shed new light on this enigmatic population of worlds.

Click here to read this post out
ID: 812040; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: