×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11668v1 Announce Type: new
Abstract: The enrichment history of $r$-process elements has been imprinted on the stellar abundances that change in accordance with increasing metallicity in galaxies. Close examination of the [Eu/Fe] feature caused by stars in nearby galaxies, including the Large Magellanic Cloud (LMC), shows its perplexity. The decreasing trend of the [Eu/Fe] feature is followed by a nearly constant value; this trend is generally attributed to an onset of the delayed Fe release from type Ia supernovae (SNe Ia), which is the same interpretation of the [$\alpha$/Fe] feature. However, this feature appears in the LMC at [Fe/H] of approximately -0.7, which is significantly higher than that for the [alpha/Fe] case ($\approx$ -2). This result potentially indicates the presence of an overlooked property of the $r$-process site that remains unseen in the study of the Milky Way. Here, we propose that this [Eu/Fe]-knee feature is created by a fade-out of core-collapse SNe producing $r$-process elements; these elements along with neutron star mergers (NSMs) promote the $r$-process enrichment under the condition for this specific SNe such that their occurrence is limited to a low-metallicity environment. This metallicity threshold for the occurrence rate of $r$-process SNe at a subsolar is nearly identical to that for long gamma-ray bursts whose origin may be connected to fast-rotating massive stars. Moreover, we reason that the contribution of Eu from NSMs is crucial to maintain a high [Eu/Fe] at an early stage in dwarf galaxies by a balance with Fe from SNe Ia; both enrichments via NSMs and SNe Ia proceed with similar delay time distributions.

Click here to read this post out
ID: 812041; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: