×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11857v1 Announce Type: new
Abstract: Principal regular satellites of gas giants are thought to be formed by the accumulation of solid materials in circumplanetary disks (CPDs). While there has been significant progress in the study of satellite formation in CPDs, details of the supply of satellite building blocks to CPDs remain unclear. We performed orbital integration of solid particles in the protoplanetary disk (PPD) approaching a planet, considering the gas drag force using the results of three-dimensional hydrodynamical simulations of a local region around the planet. We investigated planetary-mass dependence of the capture positions and capture rates of dust particles accreting onto the CPD. We also examined the degree of dust retention in accreting gas onto the CPD, which is important for determining the ratio of dust-to-gas inflow rates, a key parameter in satellite formation. We found that the degree of dust retention increases with increasing planetary mass for a given dust scale height in the PPD. In the case of a small planet ($M_{\rm p}=0.2M_{\rm Jup}$), most particles with insufficient initial altitudes in the PPD are isolated from the gas in the accreting region. On the other hand, in the case of a massive planet ($M_{\rm p}=1M_{\rm Jup}$), dust particles can be coupled to the vertically accreting gas, even when the dust scale height is about $10-30$\% of the gas scale height. The results of this study can be used for models of dust delivery and satellite formation in the CPDs of gas giants of various masses, including exoplanets.

Click here to read this post out
ID: 812051; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: