×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11866v1 Announce Type: new
Abstract: Oscillating neutron stars are sources of continuous gravitational waves. We study analytically the excitation of stellar oscillations by the mechanical impact on the stellar surface of ''clumps'' of stochastically accreted matter. We calculate the waveform and spectrum of the gravitational wave signal emitted by the accretion-driven pulsations. Results are generated for an idealised model of a nonrotating, unmagnetised, one-component star with uniform polytropic index $n_{\rm poly}$ assuming Newtonian gravity and the Cowling approximation. We find that the excited mode amplitudes grow with increasing $n_{\rm poly}$ and mode order $n$. The gravitational wave signal forms a sequence of amplitude-modulated packets for $n_{\rm poly}=1$, lasting $\sim 10^{-3}$s after each impact. The gravitational wave strain increases with increasing $n_{\rm poly}$, but decreases with increasing $n$ and increasing multipole order $l$ for $n_{\rm poly}=1$. In the observing band of current long-baseline interferometers, $g$-modes emit higher, narrower peaks in the amplitude spectral density than $f$- and $p$-modes, with the highest peaks reaching $\sim 10^{-26}$Hz$^{-1/2}$ for modes with damping time $\tau_{nl} \sim 10^{8}$yr. The root-mean-square strain $h_{\text{rms}}$, calculated by summing over modes with $2\leq l\leq4$ and $\tau_{nl} \leq 10^{8}$yr, spans the range $10^{-33} \leq h_{\text{rms}} \leq 10^{-32}$ for $1\leq n_{\text{poly}}\leq 2$.

Click here to read this post out
ID: 812052; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: