×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11948v1 Announce Type: new
Abstract: Growing observations of temporal, spectral, and polarization properties of fast radio bursts (FRBs) indicate that the radio emission of the majority of bursts is likely produced inside the magnetosphere of its central engine, likely a magnetar. We revisit the idea that FRBs are generated via coherent inverse Compton scattering (ICS) off low-frequency X-mode electromagnetic waves (fast magnetosonic waves) by bunches at a distance of a few hundred times of the magnetar radius. Following findings are revealed: 1. Crustal oscillations during a flaring event would excite kHz Alfv\'en waves. Fast magnetosonic waves with the same frequency can be generated directly or be converted from Alfv\'en waves at a large radius, with an amplitude large enough to power FRBs via the ICS process. 2. The cross section increases rapidly with radius and significant ICS can occur at $r \gtrsim 100 R_\star$ with emission power much greater than the curvature radiation power but still in the linear scattering regime. 3. The low-frequency fast magnetosonic waves naturally redistribute a fluctuating relativistic plasma in the charge-depleted region to form bunches with the right size to power FRBs. 4. The required bunch net charge density can be sub-Goldreich-Julian, which allows a strong parallel electric field to accelerate the charges, maintain the bunches, and continuously power FRB emission. 5. This model can account for a wide range of observed properties of repeating FRB bursts, including high degrees of linear and circular polarization and narrow spectra as observed in many bursts from repeating FRB sources.

Click here to read this post out
ID: 812057; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: