×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12034v1 Announce Type: new
Abstract: Three-dimensional magnetic nulls are the points where magnetic field vanishes and are preferential sites for magnetic reconnection: a process which converts magnetic energy into heat and accelerates charged particles along with a rearrangement of magnetic field lines. In the solar corona, the reconnections manifest as coronal transients including solar flares, coronal mass ejections and coronal jets. The nulls are generally found to be collocated with complex active regions on the solar photosphere. Extrapolation of magnetic field from corresponding photospheric magnetogram indicate an abundance of these nulls in solar atmosphere. Nevertheless, their generation is still not well understood. Recently, Maurya et al. (2023) have demonstrated magnetic reconnection to be a cause for generation and annihilation of magnetic nulls through magnetohydrodynamics simulation, where the initial magnetic field is idealized to have a single radial null. This article further extends the study in a more realistic scenario where the initial magnetic field is constructed by extrapolating photospheric magnetogram data and hence, incorporates field line complexities inherent to a complex active region. For the purpose, the active region NOAA 11977 hosting a C6.6 class flare is selected. The simulation is initiated using non-force-free extrapolated magnetic field from the photospheric vector magnetogram at around 02:48:00 UT on 17 February 2014, 16 minutes before the flare peak. The generation, annihilation and dynamics of nulls are explored by a complimentary usage of trilinear null detection technique and tracing of magnetic field line dynamics. It is found that the nulls can spontaneously generate/annihilate in pairs while preserving the topological degree and can have observational implications like footpoint brightenings. Magnetic reconnection is found to be the cause of such generation and annihilation.

Click here to read this post out
ID: 812061; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: