×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12239v1 Announce Type: new
Abstract: Several stars show deep transits consistent with discs of roughly 1 Solar radius seen at moderate inclinations, likely surrounding planets on eccentric orbits. We show that this configuration arises naturally as a result of planet-planet scattering when the planets possess satellite systems. Planet-planet scattering explains the orbital eccentricities of the discs' host bodies, while the close encounters during scattering lead to the exchange of satellites between planets and/or their destabilisation. This leads to collisions between satellites and their tidal disruption close to the planet. Both of these events lead to large quantities of debris being produced, which in time will settle into a disc such as those observed. The mass of debris required is comparable to a Ceres-sized satellite. Through N-body simulations of planets with clones of the Galilean satellite system undergoing scattering, we show that 90 percent of planets undergoing scattering will possess debris from satellite destruction. Extrapolating to smaller numbers of satellites suggests that tens of percent of such planets should still possess circumplanetary debris discs. The debris trails arising from these events are often tilted at tens of degrees to the planetary orbit, consistent with the inclinations of the observed discs. Disruption of satellite systems during scattering thus simultaneously explains the existence of debris, the tilt of the discs, and the eccentricity of the planets they orbit.

Click here to read this post out
ID: 812071; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: