×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12331v1 Announce Type: new
Abstract: Research has shown that many young and intermediate-age clusters (younger than $\sim$2 Gyr) have extended main sequences and main-sequence turnoffs (eMSTOs), which cannot be adequately described by a single isochrone. The reason for the extended main sequences is now known, with the most probable cause being the fast rotation of stars. However, a significant fraction of slowly rotating stars form a younger stellar population than their fast-rotating counterparts, leading to speculation that they have undergone thorough rotational mixing processes internally. One speculation is that a considerable number of slowly rotating stars reside in close binary systems, where tidal forces from companion stars are the cause of their rotational deceleration. In this work, we report a relatively old open star cluster in the Milky Way, NGC 2423 ($\sim$1 Gyrs old), which exhibits an apparent eMSTO. As anticipated, many characteristics of NGC 2423 indicate that its eMSTO is driven by stellar rotations. Our calculations indicate that if slowly rotating stars commonly have a close companion star, they should exhibit significant differences in radial velocities observationally, and binary systems that can be tidally locked within the age of NGC 2423 should have a mass ratio close to 1. However, none of these predictions align with our observations. Interestingly, among the only two equal-mass binary systems in the observed region for which spectroscopic data could be obtained, we discovered that one of them is a tidally locked binary system. This further suggests the validity of our numerical simulation results.

Click here to read this post out
ID: 812077; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: