×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2312.01875v3 Announce Type: replace
Abstract: High-precision pulsar timing observations are limited in their accuracy by the jitter noise that appears in the arrival time of pulses. Therefore, it is important to systematically characterise the amplitude of the jitter noise and its variation with frequency. In this paper, we provide jitter measurements from low-frequency wideband observations of PSR J0437$-$4715 using data obtained as part of the Indian Pulsar Timing Array experiment. We were able to detect jitter in both the 300 - 500 MHz and 1260 - 1460 MHz observations of the upgraded Giant Metrewave Radio Telescope (uGMRT). The former is the first jitter measurement for this pulsar below 700 MHz, and the latter is in good agreement with results from previous studies. In addition, at 300 - 500 MHz, we investigated the frequency dependence of the jitter by calculating the jitter for each sub-banded arrival time of pulses. We found that the jitter amplitude increases with frequency. This trend is opposite as compared to previous studies, indicating that there is a turnover at intermediate frequencies. It will be possible to investigate this in more detail with uGMRT observations at 550 - 750 MHz and future high sensitive wideband observations from next generation telescopes, such as the Square Kilometre Array. We also explored the effect of jitter on the high precision dispersion measure (DM) measurements derived from short duration observations. We find that even though the DM precision will be better at lower frequencies due to the smaller amplitude of jitter noise, it will limit the DM precision for high signal-to-noise observations, which are of short durations. This limitation can be overcome by integrating for a long enough duration optimised for a given pulsar.

Click here to read this post out
ID: 812101; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: