×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.00317v2 Announce Type: replace
Abstract: Deep optical emission-line images are presented for nine known plus three new Galactic supernova remnants (SNRs), all but one having at least one angular dimension greater than one degree. Wide-field images taken in H$\alpha$ and [O III] $\lambda$5007 reveal many new and surprising remnant structures including large remnant shock extensions and `breakout' features not seen in published optical or radio data. These images represent over 12,000 individual images totaling more than 1000 hours of exposure time taken over the last two years mainly using small aperture telescopes which detected fainter nebular line emissions than published emission-line images. During the course of this imaging program, we discovered three new SNRs, namely G107.5-5.1 (the Nereides Nebula), G209.9-8.2, and G210.5+1.3, two of which have diameters >1.5 degrees. Besides offering greater structural detail on the nine already known SNRs, a key finding of this study is the importance of [O III] emission-line imaging for mapping the complete shock emissions of Galactic SNRs.

Click here to read this post out
ID: 812108; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: