×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.10427v2 Announce Type: replace
Abstract: We estimate the coronal density of Capella using the O VII and Fe XVII line systems in the soft X-ray regime that have been observed over the course of the Chandra mission. Our analysis combines measures of error due to uncertainty in the underlying atomic data with statistical errors in the Chandra data to derive meaningful overall uncertainties on the plasma density of the coronae of Capella. We consider two Bayesian frameworks. First, the so-called pragmatic-Bayesian approach considers the atomic data and their uncertainties as fully specified and uncorrectable. The fully-Bayesian approach, on the other hand, allows the observed spectral data to update the atomic data and their uncertainties, thereby reducing the overall errors on the inferred parameters. To incorporate atomic data uncertainties, we obtain a set of atomic data replicates, the distribution of which captures their uncertainty. A principal component analysis of these replicates allows us to represent the atomic uncertainty with a lower-dimensional multivariate Gaussian distribution. A $t$-distribution approximation of the uncertainties of a subset of plasma parameters including a priori temperature information, obtained from the temperature-sensitive-only Fe XVII spectral line analysis, is carried forward into the density- and temperature-sensitive O VII spectral line analysis. Markov Chain Monte Carlo based model fitting is implemented including Multi-step Monte Carlo Gibbs Sampler and Hamiltonian Monte Carlo. Our analysis recovers an isothermally approximated coronal plasma temperature of $\approx$5 MK and a coronal plasma density of $\approx$10$^{10}$ cm$^{-3}$, with uncertainties of 0.1 and 0.2 dex respectively.

Click here to read this post out
ID: 812114; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: