×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11636v1 Announce Type: new
Abstract: Inorganic cesium lead iodide (CsPbI$_3$) perovskite solar cells (PSCs) have attracted enormous attention due to their excellent thermal stability and optical bandgap (~1.73 eV), well-suited for tandem device applications. However, achieving high-performing photovoltaic devices processed at low temperatures is still challenging. Here we reported a new method to fabricate high-efficiency and stable $\gamma$-CsPbI$_3$ PSCs at lower temperatures than was previously possible by introducing the long-chain organic cation salt ethane-1,2-diammonium iodide (EDAI2) and regulating the content of lead acetate (Pb(OAc)2) in the perovskite precursor solution. We find that EDAI2 acts as an intermediate that can promote the formation of $\gamma$-CsPbI$_3$, while excess Pb(OAc)2 can further stabilize the $\gamma$-phase of CsPbI$_3$ perovskite. Consequently, improved crystallinity and morphology and reduced carrier recombination are observed in the CsPbI$_3$ films fabricated by the new method. By optimizing the hole transport layer of CsPbI$_3$ inverted architecture solar cells, we demonstrate up to 16.6% efficiencies, surpassing previous reports examining $\gamma$-CsPbI$_3$ in inverted PSCs. Notably, the encapsulated solar cells maintain 97% of their initial efficiency at room temperature and dim light for 25 days, demonstrating the synergistic effect of EDAI2 and Pb(OAc)2 on stabilizing $\gamma$-CsPbI$_3$ PSCs.

Click here to read this post out
ID: 812127; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: