×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11653v1 Announce Type: new
Abstract: We develop a many-body perturbation theory to account for the emergence of moir\'e bands in the continuum model of twisted bilayer graphene. Our framework is build upon treating the moir\'e potential as a perturbation that transfers electrons from one layer to another through the exchange of the three wave vectors that define the moir\'e Brillouin zone. By working in the two-band basis of each monolayer, we analyze the one-particle Green's function and introduce a diagrammatic representation for the scattering processes. We then identify the moir\'e-induced self-energy, relate it to the quasiparticle weight and velocity of the moir\'e bands, and show how it can be obtained by summing irreducible diagrams. We also connect the emergence of flat bands to the behavior of the static self-energy at the magic angle. In particular, we show that a vanishing Dirac velocity is a direct consequence of the relative orientation of the momentum transfer vectors, suggesting that the origin of magic angles in twisted bilayer graphene is intrinsically connected to its geometrical properties. Our approach provides a many-body diagrammatic framework that highlights the physical properties of the moir\'e bands.

Click here to read this post out
ID: 812133; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: