×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11820v1 Announce Type: new
Abstract: We present a comparative analysis of the validity of Eliashberg theory for the cases of fermions interacting with an Einstein phonon and with soft nematic fluctuations near an Ising-nematic/Ising-ferromagnetic quantum-critical point (QCP). In both cases, Eliashberg theory is obtained by neglecting vertex corrections. For the phonon case, the reasoning to neglect vertex corrections is the Migdal ``fast electron/slow boson'' argument because the phonon velocity is much smaller than the Fermi velocity, $v_F$. The same argument allows one to compute the fermionic self-energy within Eliashberg theory perturbatively rather than self-consistently. For the nematic case, the velocity of a collective boson is comparable to $v_F$ and this argument apparently does not work. Nonetheless, we argue that while two-loop vertex corrections near a nematic QCP are not small parametrically, they are small numerically. At the same time, perturbative calculation of the fermionic self-energy can be rigorously justified when the fermion-boson coupling is small compared to the Fermi energy. Furthermore, we argue that for the electron-phonon case Eliashberg theory breaks down at some distance from where the dressed Debye frequency would vanish, while for the nematic case it holds all the way to a QCP. From this perspective, Eliashberg theory for the nematic case actually works better than for the electron-phonon case.

Click here to read this post out
ID: 812147; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: