×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12106v1 Announce Type: new
Abstract: The classical Landau--Lifshitz equation -- the simplest model of a ferromagnet -- provides an archetypal example for studying transport phenomena. In one-spatial dimension, integrability enables the classification of the spectrum of linear and nonlinear modes. An exact characterization of finite-temperature thermodynamics and transport has nonetheless remained elusive. We present an exact description of thermodynamic equilibrium states in terms of interacting modes. This is achieved by retrieving the classical Landau--Lifschitz model through the semiclassical limit of the integrable quantum spin-$S$ anisotropic Heisenberg chain at the level of the thermodynamic Bethe ansatz description. In the axial regime, the mode spectrum comprises solitons with unconventional statistics, whereas in the planar regime we additionally find two special types of modes of radiative and solitonic type. The obtained framework paves the way for analytical study of unconventional transport properties: as an example we study the finite-temperature spin Drude weight, finding excellent agreement with Monte Carlo simulations.

Click here to read this post out
ID: 812159; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: