×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2303.16054v2 Announce Type: replace
Abstract: Phase-shifting electron holography is an excellent method to reveal electron wave phase information with very high phase sensitivity over a large range of spatial frequencies. It circumvents the limiting trade-off between fringe spacing and visibility of standard off-axis holography. Previous implementations have been limited by the independent drift of biprism and sample. We demonstrate here an advanced drift correction scheme for the hologram series that exploits the presence of an interface of the TEM specimen to the vacuum area in the hologram. It allows to obtain reliable phase information up to 2{\pi}/452 at the 1 {\AA} information limit of the Titan 80-300 kV environmental transmission electron microscope used, by applying a moderate voltage of 250 V to a single biprism for a fringe spacing of 1 {\AA}. The obtained phase and amplitude information is validated at a thin Pt sample by use of multislice image simulation with the frozen lattice approximation and shows excellent agreement. The presented method is applicable in any TEM equipped with at least one electron biprism and thus enables achieving high resolution off-axis holography in various instruments including those for in-situ applications. A software implementation for the acquisition, calibration and reconstruction is provided.

Click here to read this post out
ID: 812206; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: