×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2305.05715v3 Announce Type: replace
Abstract: Evidence is growing that a second dome of high-$T_\mathrm{c}$ superconductivity can be accessed in the cuprates by increasing the doping beyond the first dome. Here we use \emph{ab initio} methods without invoking any free parameters, such as the Hubbard $U$, to reveal that pressure could turn YBa$_2$Cu$_3$O$_7$ into an ideal candidate for second-dome-superconductivity, displaying the predicted signature of strongly hybridized $d_{x^2-y^2}$ and $d_{z^2}$ orbitals. Notably, pressure is found to induce a phase transition replacing the antiferromagnetic phases with an orbitally-degenerate $d$--$d$ phase. Our study suggests that the origin of the second dome is correlated with the oxygen-hole fraction in the CuO$_2$ planes and the collapse of the pseudogap phase.

Click here to read this post out
ID: 812208; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 14
CC:
No creative common's license
Comments: