×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2307.12960v3 Announce Type: replace
Abstract: For arbitrary non-equilibrium transformations in complex systems, we show that the distance between the current state and a target state can be decomposed into two terms: one corresponding to an independent estimate of the distance, and another corresponding to interactions, quantified using the relative mutual information between the variables. This decomposition is a special case of a more general decomposition involving successive orders of correlation or interactions among the degrees of freedom of the system. To illustrate its practical significance, we study the thermal relaxation of two interacting, optically trapped colloidal particles, where increasing pairwise interaction strength is shown to prolong the longevity of the time-dependent non-equilibrium state. Additionally, we study a system with both pairwise and triplet interactions, where our approach identifies their distinct contributions to the transformation. In more general setups where it is possible to control the strength of different orders of interactions, our findings provide a way to disentangle their effects and identify interactions that facilitate the transformation.

Click here to read this post out
ID: 812213; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: