×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2312.13059v2 Announce Type: replace
Abstract: The supercurrent field effect is experimentally realized in various nano-scale devices, based on the superconductivity suppression by external electric fields being effective for confined systems. In spite of intense research, a microscopic theory and explanation of this effect is missing. Here, a microscopic theory of phonon-mediated superconductivity in thin films is presented, which accounts for the effect of quantum confinement on the electronic density of states, on the Fermi energy, and on the topology of allowed states in momentum space. By further accounting for the interplay between quantum confinement, the external static electric field, the Thomas-Fermi screening in the electron-phonon matrix element, and the effect of confinement on the Coulomb repulsion parameter, the theory predicts the critical value of the external electric field as a function of the film thickness, above which superconductivity is suppressed. In particular, this critical value of the electric field is the lower the thinner the film, in agreement with recent experimental observations. Crucially, this effect is predicted by the theory when both Thomas-Fermi screening and the Coulomb pseudopotential are taken into account, along with the respective dependence on thin film thickness. This microscopic theory of the supercurrent field-effect opens up new possibilities for electric-field gated quantum materials.

Click here to read this post out
ID: 812223; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: