×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11669v1 Announce Type: new
Abstract: Designing a 3D representation of a dynamic scene for fast optimization and rendering is a challenging task. While recent explicit representations enable fast learning and rendering of dynamic radiance fields, they require a dense set of input viewpoints. In this work, we focus on learning a fast representation for dynamic radiance fields with sparse input viewpoints. However, the optimization with sparse input is under-constrained and necessitates the use of motion priors to constrain the learning. Existing fast dynamic scene models do not explicitly model the motion, making them difficult to be constrained with motion priors. We design an explicit motion model as a factorized 4D representation that is fast and can exploit the spatio-temporal correlation of the motion field. We then introduce reliable flow priors including a combination of sparse flow priors across cameras and dense flow priors within cameras to regularize our motion model. Our model is fast, compact and achieves very good performance on popular multi-view dynamic scene datasets with sparse input viewpoints. The source code for our model can be found on our project page: https://nagabhushansn95.github.io/publications/2024/RF-DeRF.html.

Click here to read this post out
ID: 812259; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: