×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11788v1 Announce Type: new
Abstract: Machine Learning (ML) operators are the building blocks to design ML models with various target applications. GEneral Matrix Multiplication (GEMM) operators are the backbone of ML models. They are notorious for being computationally expensive requiring billions of multiply-and-accumulate. Therefore, significant effort has been put to study and optimize the GEMM operators in order to speed up the execution of ML models. GPUs and accelerators are widely deployed to accelerate ML workloads by optimizing the execution of GEMM operators. Nonetheless, the performance of NonGEMM operators have not been studied as thoroughly as GEMMs. Therefore, this paper describes \bench, a benchmark to study NonGEMM operators. We first construct \bench using popular ML workloads from different domains, then perform case studies on various grade GPU platforms to analyze the behavior of NonGEMM operators in GPU accelerated systems. Finally, we present some key takeaways to bridge the gap between GEMM and NonGEMM operators and to offer the community with potential new optimization directions.

Click here to read this post out
ID: 812311; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: