×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11815v1 Announce Type: new
Abstract: Underwater datacenters (UDCs) hold promise as next-generation data storage due to their energy efficiency and environmental sustainability benefits. While the natural cooling properties of water save power, the isolated aquatic environment and long-range sound propagation in water create unique vulnerabilities which differ from those of on-land data centers. Our research discovers the unique vulnerabilities of fault-tolerant storage devices, resource allocation software, and distributed file systems to acoustic injection attacks in UDCs. With a realistic testbed approximating UDC server operations, we empirically characterize the capabilities of acoustic injection underwater and find that an attacker can reduce fault-tolerant RAID 5 storage system throughput by 17% up to 100%. Our closed-water analyses reveal that attackers can (i) cause unresponsiveness and automatic node removal in a distributed filesystem with only 2.4 minutes of sustained acoustic injection, (ii) induce a distributed database's latency to increase by up to 92.7% to reduce system reliability, and (iii) induce load-balance managers to redirect up to 74% of resources to a target server to cause overload or force resource colocation. Furthermore, we perform open-water experiments in a lake and find that an attacker can cause controlled throughput degradation at a maximum allowable distance of 6.35 m using a commercial speaker. We also investigate and discuss the effectiveness of standard defenses against acoustic injection attacks. Finally, we formulate a novel machine learning-based detection system that reaches 0% False Positive Rate and 98.2% True Positive Rate trained on our dataset of profiled hard disk drives under 30-second FIO benchmark execution. With this work, we aim to help manufacturers proactively protect UDCs against acoustic injection attacks and ensure the security of subsea computing infrastructures.

Click here to read this post out
ID: 812324; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: