×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11818v1 Announce Type: new
Abstract: The embedding-based architecture has become the dominant approach in modern recommender systems, mapping users and items into a compact vector space. It then employs predefined similarity metrics, such as the inner product, to calculate similarity scores between user and item embeddings, thereby guiding the recommendation of items that align closely with a user's preferences. Given the critical role of similarity metrics in recommender systems, existing methods mainly employ handcrafted similarity metrics to capture the complex characteristics of user-item interactions. Yet, handcrafted metrics may not fully capture the diverse range of similarity patterns that can significantly vary across different domains.
To address this issue, we propose an Automated Similarity Metric Generation method for recommendations, named AutoSMG, which can generate tailored similarity metrics for various domains and datasets. Specifically, we first construct a similarity metric space by sampling from a set of basic embedding operators, which are then integrated into computational graphs to represent metrics. We employ an evolutionary algorithm to search for the optimal metrics within this metric space iteratively. To improve search efficiency, we utilize an early stopping strategy and a surrogate model to approximate the performance of candidate metrics instead of fully training models. Notably, our proposed method is model-agnostic, which can seamlessly plugin into different recommendation model architectures. The proposed method is validated on three public recommendation datasets across various domains in the Top-K recommendation task, and experimental results demonstrate that AutoSMG outperforms both commonly used handcrafted metrics and those generated by other search strategies.

Click here to read this post out
ID: 812327; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: