×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11869v1 Announce Type: new
Abstract: Graph Transformers (GTs) have made remarkable achievements in graph-level tasks. However, most existing works regard graph structures as a form of guidance or bias for enhancing node representations, which focuses on node-central perspectives and lacks explicit representations of edges and structures. One natural question is, can we treat graph structures node-like as a whole to learn high-level features? Through experimental analysis, we explore the feasibility of this assumption. Based on our findings, we propose a novel multi-view graph structural representation learning model via graph coarsening (MSLgo) on GT architecture for graph classification. Specifically, we build three unique views, original, coarsening, and conversion, to learn a thorough structural representation. We compress loops and cliques via hierarchical heuristic graph coarsening and restrict them with well-designed constraints, which builds the coarsening view to learn high-level interactions between structures. We also introduce line graphs for edge embeddings and switch to edge-central perspective to construct the conversion view. Experiments on six real-world datasets demonstrate the improvements of MSLgo over 14 baselines from various architectures.

Click here to read this post out
ID: 812349; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: