×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12142v1 Announce Type: new
Abstract: Deep image prior (DIP) proposed in recent research has revealed the inherent trait of convolutional neural networks (CNN) for capturing substantial low-level image statistics priors. This framework efficiently addresses the inverse problems in image processing and has induced extensive applications in various domains. However, as the whole algorithm is initialized randomly, the DIP algorithm often lacks stability. Thus, this method still has space for further improvement. In this paper, we propose the self-reinforcement deep image prior (SDIP) as an improved version of the original DIP. We observed that the changes in the DIP networks' input and output are highly correlated during each iteration. SDIP efficiently utilizes this trait in a reinforcement learning manner, where the current iteration's output is utilized by a steering algorithm to update the network input for the next iteration, guiding the algorithm toward improved results. Experimental results across multiple applications demonstrate that our proposed SDIP framework offers improvement compared to the original DIP method and other state-of-the-art methods.

Click here to read this post out
ID: 812479; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: