×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12240v1 Announce Type: new
Abstract: Accurate spatio-temporal information about the current situation is crucial for smart city applications such as modern routing algorithms. Often, this information describes the state of stationary resources, e.g. the availability of parking bays, charging stations or the amount of people waiting for a vehicle to pick them up near a given location. To exploit this kind of information, predicting future states of the monitored resources is often mandatory because a resource might change its state within the time until it is needed. To train an accurate predictive model, it is often not possible to obtain a continuous time series on the state of the resource. For example, the information might be collected from traveling agents visiting the resource with an irregular frequency. Thus, it is necessary to develop methods which work on sparse observations for training and prediction. In this paper, we propose time-inhomogeneous discrete Markov models to allow accurate prediction even when the frequency of observation is very rare. Our new model is able to blend recent observations with historic data and also provide useful probabilistic estimates for future states. Since resources availability in a city is typically time-dependent, our Markov model is time-inhomogeneous and cyclic within a predefined time interval. To train our model, we propose a modified Baum-Welch algorithm. Evaluations on real-world datasets of parking bay availability show that our new method indeed yields good results compared to methods being trained on complete data and non-cyclic variants.

Click here to read this post out
ID: 812520; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: