×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2303.13959v4 Announce Type: replace
Abstract: 3D semantic scene completion (SSC) is an ill-posed perception task that requires inferring a dense 3D scene from limited observations. Previous camera-based methods struggle to predict accurate semantic scenes due to inherent geometric ambiguity and incomplete observations. In this paper, we resort to stereo matching technique and bird's-eye-view (BEV) representation learning to address such issues in SSC. Complementary to each other, stereo matching mitigates geometric ambiguity with epipolar constraint while BEV representation enhances the hallucination ability for invisible regions with global semantic context. However, due to the inherent representation gap between stereo geometry and BEV features, it is non-trivial to bridge them for dense prediction task of SSC. Therefore, we further develop a unified occupancy-based framework dubbed BRGScene, which effectively bridges these two representations with dense 3D volumes for reliable semantic scene completion. Specifically, we design a novel Mutual Interactive Ensemble (MIE) block for pixel-level reliable aggregation of stereo geometry and BEV features. Within the MIE block, a Bi-directional Reliable Interaction (BRI) module, enhanced with confidence re-weighting, is employed to encourage fine-grained interaction through mutual guidance. Besides, a Dual Volume Ensemble (DVE) module is introduced to facilitate complementary aggregation through channel-wise recalibration and multi-group voting. Our method outperforms all published camera-based methods on SemanticKITTI for semantic scene completion. Our code is available on \url{https://github.com/Arlo0o/StereoScene}.

Click here to read this post out
ID: 812662; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: