×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2312.08888v2 Announce Type: replace
Abstract: We address the Continual Learning (CL) problem, wherein a model must learn a sequence of tasks from non-stationary distributions while preserving prior knowledge upon encountering new experiences. With the advancement of foundation models, CL research has pivoted from the initial learning-from-scratch paradigm towards utilizing generic features from large-scale pre-training. However, existing approaches to CL with pre-trained models primarily focus on separating class-specific features from the final representation layer and neglect the potential of intermediate representations to capture low- and mid-level features, which are more invariant to domain shifts. In this work, we propose LayUP, a new prototype-based approach to continual learning that leverages second-order feature statistics from multiple intermediate layers of a pre-trained network. Our method is conceptually simple, does not require access to prior data, and works out of the box with any foundation model. LayUP surpasses the state of the art in four of the seven class-incremental learning benchmarks, all three domain-incremental learning benchmarks and in six of the seven online continual learning benchmarks, while significantly reducing memory and computational requirements compared to existing baselines. Our results demonstrate that fully exhausting the representational capacities of pre-trained models in CL goes well beyond their final embeddings.

Click here to read this post out
ID: 812723; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: