×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2312.16867v2 Announce Type: replace
Abstract: Fluid motion can be considered as a point cloud transformation when using the SPH method. Compared to traditional numerical analysis methods, using machine learning techniques to learn physics simulations can achieve near-accurate results, while significantly increasing efficiency. In this paper, we propose an innovative approach for 3D fluid simulations utilizing an Attention-based Dual-pipeline Network, which employs a dual-pipeline architecture, seamlessly integrated with an Attention-based Feature Fusion Module. Unlike previous methods, which often make difficult trade-offs between global fluid control and physical law constraints, we find a way to achieve a better balance between these two crucial aspects with a well-designed dual-pipeline approach. Additionally, we design a Type-aware Input Module to adaptively recognize particles of different types and perform feature fusion afterward, such that fluid-solid coupling issues can be better dealt with. Furthermore, we propose a new dataset, Tank3D, to further explore the network's ability to handle more complicated scenes. The experiments demonstrate that our approach not only attains a quantitative enhancement in various metrics, surpassing the state-of-the-art methods but also signifies a qualitative leap in neural network-based simulation by faithfully adhering to the physical laws. Code and video demonstrations are available at https://github.com/chenyu-xjtu/DualFluidNet.

Click here to read this post out
ID: 812727; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: