×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2401.16553v5 Announce Type: replace
Abstract: Instruction tuning benefits from large and diverse datasets, however creating such datasets involves a high cost of human labeling. While synthetic datasets generated by large language models (LLMs) have partly solved this issue, they often contain low-quality data. One effective solution is selectively annotating unlabelled instructions, especially given the relative ease of acquiring unlabeled instructions or texts from various sources. However, how to select unlabelled instructions is not well-explored, especially in the context of LLMs. Further, traditional data selection methods, relying on input embedding space density, tend to underestimate instruction sample complexity, whereas those based on model prediction uncertainty often struggle with synthetic label quality. Therefore, we introduce SelectLLM, an alternative framework that leverages the capabilities of LLMs to more effectively select unlabeled instructions. SelectLLM consists of two key steps: Coreset-based clustering of unlabelled instructions for diversity and then prompting a LLM to identify the most beneficial instructions within each cluster. Our experiments demonstrate that SelectLLM matches or outperforms other state-of-the-art methods in instruction tuning benchmarks. It exhibits remarkable consistency across human and synthetic datasets, along with better cross-dataset generalization, as evidenced by a 10% performance improvement on the Cleaned Alpaca test set when trained on Dolly data. All code and data are publicly available (https://github.com/minnesotanlp/select-llm).

Click here to read this post out
ID: 812736; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: