×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.07760v2 Announce Type: replace
Abstract: Given an increasing sequence of integers $x_1,\ldots,x_n$ from a universe $\{0,\ldots,u-1\}$, the monotone minimal perfect hash function (MMPHF) for this sequence is a data structure that answers the following rank queries: $rank(x) = i$ if $x = x_i$, for $i\in \{1,\ldots,n\}$, and $rank(x)$ is arbitrary otherwise. Assadi, Farach-Colton, and Kuszmaul recently presented at SODA'23 a proof of the lower bound $\Omega(n \min\{\log\log\log u, \log n\})$ for the bits of space required by MMPHF, provided $u \ge n 2^{2^{\sqrt{\log\log n}}}$, which is tight since there is a data structure for MMPHF that attains this space bound (and answers the queries in $O(\log u)$ time). In this paper, we close the remaining gap by proving that, for $u \ge (1+\epsilon)n$, where $\epsilon > 0$ is any constant, the tight lower bound is $\Omega(n \min\{\log\log\log \frac{u}{n}, \log n\})$, which is also attainable; we observe that, for all reasonable cases when $n < u < (1+\epsilon)n$, known facts imply tight bounds, which virtually settles the problem. Along the way we substantially simplify the proof of Assadi et al. replacing a part of their heavy combinatorial machinery by trivial observations. However, an important part of the proof still remains complicated. This part of our paper repeats arguments of Assadi et al. and is not novel. Nevertheless, we include it, for completeness, offering a somewhat different perspective on these arguments.

Click here to read this post out
ID: 812762; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: