×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2309.11744v2 Announce Type: replace-cross
Abstract: We study mean-field control problems in discrete-time under the infinite horizon average cost optimality criteria. We focus on both the finite population and the infinite population setups. We show the existence of a solution to the average cost optimality equation (ACOE) and the existence of optimal stationary Markov policies for finite population problems under (i) a minorization condition that provides geometric ergodicity on the collective state process of the agents, and (ii) under standard Lipschitz continuity assumptions on the stage-wise cost and transition function of the agents when the Lipschitz constant of the transition function satisfies a certain bound. For the infinite population problem, we establish the existence of a solution to the ACOE, and the existence of optimal policies under the continuity assumptions on the cost and the transition functions. Finally, we relate the finite population and infinite population control problems: (i) we prove that the optimal value of the finite population problem converges to the optimal value of the infinite population problem as the number of agents grows to infinity; (ii) we show that the accumulation points of the finite population optimal solution corresponds to an optimal solution for the infinite population problem, and finally (iii), we show that one can use the solution of the infinite population problem for the finite population problem symmetrically across the agents to achieve near optimal performance when the population is sufficiently large.

Click here to read this post out
ID: 812841; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: