×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12165v1 Announce Type: new
Abstract: Game-theoretic MPC (or Receding Horizon Games) is an emerging control methodology for multi-agent systems that generates control actions by solving a dynamic game with coupling constraints in a receding-horizon fashion. This control paradigm has recently received an increasing attention in various application fields, including robotics, autonomous driving, traffic networks, and energy grids, due to its ability to model the competitive nature of self-interested agents with shared resources while incorporating future predictions, dynamic models, and constraints into the decision-making process. In this work, we present the first formal stability analysis based on dissipativity and monotone operator theory that is valid also for non-potential games. Specifically, we derive LMI-based certificates that ensure asymptotic stability and are numerically verifiable. Moreover, we show that, if the agents have decoupled dynamics, the numerical verification can be performed in a scalable manner. Finally, we present tuning guidelines for the agents' cost function weights to fulfill the certificates and, thus, ensure stability.

Click here to read this post out
ID: 812894; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: