×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11881v1 Announce Type: cross
Abstract: Movable antenna (MA) is an emerging technology that utilizes localized antenna movement to pursue better channel conditions for enhancing communication performance. In this paper, we study the MA-enhanced multicast transmission from a base station equipped with multiple MAs to multiple groups of single-MA users. Our goal is to maximize the minimum weighted signal-to-interference-plus-noise ratio (SINR) among all the users by jointly optimizing the position of each transmit/receive MA and the transmit beamforming. To tackle this challenging problem, we first consider the single-group scenario and propose an efficient algorithm based on the techniques of alternating optimization and successive convex approximation. Particularly, when optimizing transmit or receive MA positions, we construct a concave lower bound for the signal-to-noise ratio (SNR) of each user by applying only the second-order Taylor expansion, which is more effective than existing works utilizing two-step approximations. The proposed design is then extended to the general multi-group scenario. Simulation results demonstrate that significant performance gains in terms of achievable max-min SNR/SINR can be obtained by our proposed algorithm over benchmark schemes. Additionally, the proposed algorithm can notably reduce the required amount of transmit power or antennas for achieving a target level of max-min SNR/SINR performance compared to benchmark schemes.

Click here to read this post out
ID: 812902; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: