×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12134v1 Announce Type: cross
Abstract: This paper addresses the problem of detecting time series outliers, focusing on systems with repetitive behavior, such as industrial robots operating on production lines.Notable challenges arise from the fact that a task performed multiple times may exhibit different duration in each repetition and that the time series reported by the sensors are irregularly sampled because of data gaps. The anomaly detection approach presented in this paper consists of three stages.The first stage identifies the repetitive cycles in the lengthy time series and segments them into individual time series corresponding to one task cycle, while accounting for possible temporal distortions.The second stage computes a prototype for the cycles using a GPU-based barycenter algorithm, specifically tailored for very large time series.The third stage uses the prototype to detect abnormal cycles by computing an anomaly score for each cycle.The overall approach, named WarpEd Time Series ANomaly Detection (WETSAND), makes use of the Dynamic Time Warping algorithm and its variants because they are suited to the distorted nature of the time series.The experiments show that \wetsand scales to large signals, computes human-friendly prototypes, works with very little data, and outperforms some general purpose anomaly detection approaches such as autoencoders.

Click here to read this post out
ID: 812911; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: