×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.01194v2 Announce Type: replace-cross
Abstract: Rapidly Exploring Random Tree (RRT) algorithms, notably used for nonholonomic vehicle navigation in complex environments, are often not thoroughly evaluated for their specific challenges. This paper presents a first such comparison study of the variants Potential-Quick RRT* (PQ-RRT*), Informed RRT* (IRRT*), RRT*, and RRT, in maritime single-query nonholonomic motion planning. Additionally, the practicalities of using these algorithms in maritime environments are discussed and outlined. We also contend that these algorithms are beneficial not only for trajectory planning in Collision Avoidance Systems (CAS) but also for CAS verification when used as vessel behavior generators.
Optimal RRT variants tend to produce more distance-optimal paths but require more computational time due to complex tree wiring and nearest neighbor searches. Our findings, supported by Welch`s t-test at a significance level of Alpha = 0.05, indicate that PQ-RRT* slightly outperform IRRT* and RRT* in achieving shorter trajectory length but at the expense of higher tuning complexity and longer run-times. Based on the results, we argue that these RRT algorithms are better suited for smaller-scale problems or environments with low obstacle congestion ratio. This is attributed to the curse of dimensionality, and trade-off with available memory and computational resources.

Click here to read this post out
ID: 812939; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: