×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11975v1 Announce Type: new
Abstract: In this paper, we extend Chandrasekhar's method of calculating rotating black holes into $f(R)$ theory. We consider the Ricci scalar is a constant and derive the Kerr and Kerr-Ads metric by using the analytical mathematical method. Suppose that the spacetime is a 4-dimensional Riemannian manifold with a general stationary axisymmetric metric, we calculate Cartan's equation of structure and derive the Einstein tensor. In order to reduce the solving difficulty, we fix the gauge freedom to transform the metric into a more symmetric form. We solve the field equations in the two cases of the Ricci scalar $R=0$ and $R\neq 0$. In the case of $R=0$, the Ernst's equations are derived. We give the elementary solution of Ernst's equations and show the way to obtain more solutions including Kerr metric. In the case of $R\neq 0$, we reasonably assume that the solution to the equations consists of two parts: the first is Kerr part and the second is introduced by the Ricci scalar. Giving solution to the second part and combining the two parts, we obtain the Kerr-Ads metric. The calculations are carried out in a general $f(R)$ theory, indicating the Kerr and Kerr-Ads black holes exist widely in general $f(R)$ models. Furthermore, the whole solving process can be treated as a standard calculation procedure to obtain rotating black holes, which can be applied to other modified gravities.

Click here to read this post out
ID: 812960; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: