×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11984v1 Announce Type: new
Abstract: The present work investigates the general wormhole solution in Einstein gravity with an exponential shape function around an ultrastatic and a finite redshift geometry. The geodesic motion around the wormholes is studied in which the deflection angle of the orbiting photon sphere is found to be negative after a certain region, indicating the presence of repulsive effect of gravity in both the ultrastatic and finite redshift wormholes. Various unbounded and bounded timelike trajectories are presented on the wormhole embedding diagrams, in which some of the bound orbits involve intersection points that may lead to causality violating geodesics. Another class of closed timelike geodesics are obtained in the unstable circular trajectory that appeared at the wormhole throat. Finally, the trajectories are classified in terms of the family of CTG orbits.

Click here to read this post out
ID: 812961; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: