×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12344v1 Announce Type: cross
Abstract: Year 1 results of the Legacy Survey of Space and Time (LSST) will provide tighter constraints on small-scale cosmology, beyond the validity of linear perturbation theory. This heightens the demand for a computationally affordable prescription that can accurately capture nonlinearities in beyond-$\Lambda$CDM models. The COmoving Lagrangian Acceleration (COLA) method, a cost-effective \textit{N}-body technique, has been proposed as a viable alternative to high-resolution \textit{N}-body simulations for training emulators of the nonlinear matter power spectrum. In this study, we evaluate this approach by employing COLA emulators to conduct a cosmic shear analysis with LSST-Y1 simulated data across three different nonlinear scale cuts. We use the $w$CDM model, for which the \textsc{EuclidEmulator2} (\textsc{ee2}) exists as a benchmark, having been trained with high-resolution \textit{N}-body simulations. We primarily utilize COLA simulations with mass resolution $M_{\rm part}\approx 8 \times 10^{10} ~h^{-1} M_{\odot}$ and force resolution $\ell_{\rm force}=0.5 ~h^{-1}$Mpc, though we also test refined settings with $M_{\rm part}\approx 1 \times 10^{10} ~h^{-1}M_{\odot}$ and force resolution $\ell_{\rm force}=0.17 ~h^{-1}$Mpc. We find the performance of the COLA emulators is sensitive to the placement of high-resolution \textit{N}-body reference samples inside the prior, which only ensure agreement in their local vicinity. However, the COLA emulators pass stringent criteria in goodness-of-fit and parameter bias throughout the prior, when $\Lambda$CDM predictions of \textsc{ee2} are computed alongside every COLA emulator prediction, suggesting a promising approach for extended models.

Click here to read this post out
ID: 812980; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: