×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12298v1 Announce Type: new
Abstract: We compute the renormalized Dirac spectral density in $N_f = 2+1$ QCD at physical quark masses, temperature $T = 230$ MeV and system size $L_s = 3.4$ fm. To that end, we perform a point-wise continuum limit of the staggered density in lattice QCD with staggered quarks. We find, for the first time, that a clear infrared structure (IR peak) emerges in the density of Dirac operator describing dynamical quarks. Features of this structure are consistent with those previously attributed to the recently-proposed IR phase of thermal QCD. Our results (i) provide solid evidence that these IR features are stable and physical; (ii) improve the upper bound for IR-phase transition temperature $T_{\mathrm{IR}}$ so that the new window is $200 < T_{\mathrm{IR}} < 230\,$MeV; (iii) support non-restoration of anomalous U$_{\mathrm A}$(1) symmetry (chiral limit) below $T \!=\! 230\,$MeV.

Click here to read this post out
ID: 813006; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: