×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12019v1 Announce Type: new
Abstract: We have developed a set of four fully coupled Boltzmann equations to precisely determine the relic density and temperature of dark matter by including three distinct sectors: dark matter, light scalar, and standard model sectors. The intricacies of heat transfer between DM and the SM sector through a light scalar particle are explored, inspired by stringent experimental constraints on the scalar-Higgs mixing angle and the DM-scalar coupling. Three distinct sectors emerge prior to DM freeze-out, requiring fully coupled Boltzmann equations to accurately compute relic density. Investigation of forbidden, resonance, and secluded DM scenarios demonstrates significant deviations between established methods and the novel approach with fully coupled Boltzmann equations. Despite increased computational demands, this emphasizes the need for improved precision in relic density calculations, underlining the importance of incorporating these equations in comprehensive analyses.

Click here to read this post out
ID: 813022; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: