×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12316v1 Announce Type: new
Abstract: In this work we discuss the neutrino mass dependent nuclear matrix element (NME) of the neutrinoless double beta decay process and derive the limit on the parameter space of the minimal Type-I seesaw model from the current available experimental data as well as the future sensitivities from the next-generation experiments. Both the explicit many-body calculations and naive extrapolations of the mass dependent NME are employed in the current work. The uncertainties of the theoretical nuclear structure models are taken into account. By combining the latest experimental data from $^{76}$Ge-based experiments, GERDA and MAJORANA, the $^{130}$Te-based experiment, CUORE and the $^{136}$Xe-based experiments, KamLAND-Zen and EXO-200, the bounds on the parameter space of the minimal Type-I seesaw model are obtained and compared with the limits from other experimental probes. Sensitivities for future experiments utilizing $^{76}$Ge-based (LEGEND-1000), $^{82}$Se-based (SuperNEMO), $^{130}$Te based (SNO+II) and $^{136}$Xe-based (nEXO), with a ten-year exposure, are also derived.

Click here to read this post out
ID: 813030; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: