×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11743v1 Announce Type: cross
Abstract: The presence of an abundant population of low frequency photons at high redshifts (such as a radio background) can source leading order effects on the evolution of the matter and spin temperatures through rapid free-free absorptions. This effect, known as soft photon heating, can have a dramatic impact on the differential brightness temperature, $\Delta T_{\rm b}$, a central observable in $21$cm cosmology. Here, we introduce a semi-analytic framework to describe the dynamics of soft photon heating, providing a simplified set of evolution equations and a useful numerical scheme which can be used to study this generic effect. We also perform quasi-instantaneous and continuous soft photon injections to elucidate the different regimes in which soft photon heating is expected to impart a significant contribution to the global $21$cm signal and its fluctuations. We find that soft photon backgrounds produced after recombination with spectral index $\gamma > 3.0$ undergo significant free-free absorption, and therefore this heating effect cannot be neglected. The effect becomes stronger with steeper spectral index, and in some cases the injection of a synchrotron-like spectrum ($\gamma = 3.6$) can suppress the amplitude of $\Delta T_{\rm b}$ relative to the standard model prediction, making the global $21$cm signal even more difficult to detect in these scenarios.

Click here to read this post out
ID: 813033; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: