×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11648v1 Announce Type: new
Abstract: In this paper we revisit the general phenomenon that scattering amplitudes of pions can be obtained from "dimensional reduction" of gluons in higher dimensions in a more general context. We show that such "dimensional reduction" operations universally turn gluons into pions regardless of details of interactions: under such operations any amplitude that is gauge invariant and contains only local simple poles becomes one that satisfies Adler zero in the soft limit. As two such examples, we show that starting from gluon amplitudes in both superstring and bosonic string theories, the operations produce "stringy" completion of pion scattering amplitudes to all orders in $\alpha'$, with leading order given by non-linear sigma model amplitudes. Via Kawai-Lewellen-Tye relations, they give closed-stringy completion for Born-Infeld theory and the special Galileon theory, which are directly related to gravity amplitudes in closed-string theories. We also discuss how they naturally produce stringy models for mixed amplitudes of pions and colored scalars.

Click here to read this post out
ID: 813057; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: