×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2308.05191v3 Announce Type: replace
Abstract: We show that the Bekenstein-Hawking entropy of large supersymmetric black holes in AdS$_5\times S^5$ emerges from remarkable cancellations in the giant graviton expansions recently proposed by Imamura, and Gaiotto and Lee, independently. A similar cancellation mechanism is shown to happen in the exact expansion in terms of free fermions recently put-forward by Murthy. These two representations can be understood as sums over independent systems of giant D3-branes and free fermions, respectively. At large charges, the free energy of each independent system localizes to its asymptotic expansion near the leading singularity. The sum over the independent systems maps their localized free energy to the localized free energy of the superconformal index of $U(N)$ $\mathcal{N}=4$ SYM. This result constitutes a non-perturbative test of the giant graviton expansion valid at any value of $N$. Moreover, in the holographic scaling limit $N\to\infty$ at fixed ratio $\frac{\text{Entropy}}{N^2}\,$, it recovers the 1/16 BPS black hole entropy by a saddle-point approximation of the giant graviton expansion.

Click here to read this post out
ID: 813101; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: