×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2310.17358v2 Announce Type: replace
Abstract: Conformal field theory (CFT) plays a key role in modern theoretical physics. Through CFT we describe real physical systems at criticality and fixed points of the renormalization group flow. It is also central in the study of quantum gravity, thanks to the AdS/CFT correspondence. This thesis originates in the context of the N=4 supersymmetric Yang-Mills (SYM) theory, which represents the CFT side of this correspondence. This work mainly revolves around the supersymmetric Wilson line and its interpretation as a conformal defect in N=4 SYM. Particularly, we focus on excitations localized on the defect called insertions, whose correlators are described by a one-dimensional CFT. The first main result of this work is an efficient algorithm for computing multipoint correlation functions of scalar insertions on the Wilson line, consisting of recursion relations up to next-to-leading order at weak coupling. We show various computations of such four-, five- and six-point correlators, and discuss their properties. Moreover, we use the four-point function case to illustrate the power of the Ward identities, which are crucial in deriving a next-to-next-to-leading order result. Thanks to these perturbative results, we find a family of differential operators annihilating our correlation functions, which we conjecture to be a multipoint extension of the Ward identities satisfied by the four-point functions. These non-perturbative constraints are shown to be fundamental ingredients in the bootstrap of a five-point function at strong coupling. To conclude, we define an inherently one-dimensional Mellin amplitude at the non-perturbative level with appropriate subtractions and analytical continuations. The efficiency of the 1d Mellin formalism is manifest at the perturbative level. We find a closed-form expression for the Mellin transform of leading order contact interactions and use it to extract CFT data.

Click here to read this post out
ID: 813105; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: